Modeling homophily and stochastic equivalence in symmetric relational data
نویسنده
چکیده
This article discusses a latent variable model for inference and prediction of symmetric relational data. The model, based on the idea of the eigenvalue decomposition, represents the relationship between two nodes as the weighted inner-product of node-specific vectors of latent characteristics. This “eigenmodel” generalizes other popular latent variable models, such as latent class and distance models: It is shown mathematically that any latent class or distance model has a representation as an eigenmodel, but not vice-versa. The practical implications of this are examined in the context of three real datasets, for which the eigenmodel has as good or better out-of-sample predictive performance than the other two models.
منابع مشابه
Generalized Latent Factor Models for Social Network Analysis
Homophily and stochastic equivalence are two primary features of interest in social networks. Recently, the multiplicative latent factor model (MLFM) is proposed to model social networks with directed links. Although MLFM can capture stochastic equivalence, it cannot model well homophily in networks. However, many real-world networks exhibit homophily or both homophily and stochastic equivalenc...
متن کاملContribution to Relational Classification with Homophily Assumption
Relational classification is a set of methods employing relations between instances in a dataset as well as their attributes. Homophily is a phenomenon present in graphs which capture real-world data, e.g., social connections between humans. Homophily is defined as following: related (neighbouring) vertices are more likely to share similarities (e.g., the same class, attribute value) as non-rel...
متن کاملModeling Stock Return Volatility Using Symmetric and Asymmetric Nonlinear State Space Models: Case of Tehran Stock Market
Volatility is a measure of uncertainty that plays a central role in financial theory, risk management, and pricing authority. Turbulence is the conditional variance of changes in asset prices that is not directly observable and is considered a hidden variable that is indirectly calculated using some approximations. To do this, two general approaches are presented in the literature of financial ...
متن کاملSome results on the symmetric doubly stochastic inverse eigenvalue problem
The symmetric doubly stochastic inverse eigenvalue problem (hereafter SDIEP) is to determine the necessary and sufficient conditions for an $n$-tuple $sigma=(1,lambda_{2},lambda_{3},ldots,lambda_{n})in mathbb{R}^{n}$ with $|lambda_{i}|leq 1,~i=1,2,ldots,n$, to be the spectrum of an $ntimes n$ symmetric doubly stochastic matrix $A$. If there exists an $ntimes n$ symmetric doubly stochastic ...
متن کاملFuzzy Relational Matrix-Based Stability Analysis for First-Order Fuzzy Relational Dynamic Systems
In this paper, two sets of sufficient conditions are obtained to ensure the existence and stability of a unique equilibrium point of unforced first-order fuzzy relational dynamical systems by using two different approaches which are both based on the fuzzy relational matrix of the model.In the first approach, the equilibrium point of the system is one of the centers of the related membership fu...
متن کامل